IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4512383.html
   My bibliography  Save this article

A Modified Model of Failure Mode and Effects Analysis Based on Generalized Evidence Theory

Author

Listed:
  • Deyun Zhou
  • Yongchuan Tang
  • Wen Jiang

Abstract

Due to the incomplete knowledge, how to handle the uncertain risk factors in failure mode and effects analysis (FMEA) is still an open issue. This paper proposes a new generalized evidential FMEA (GEFMEA) model to handle the uncertain risk factor, which may not be included in the conventional FMEA model. In GEFMEA, not only the conventional risk factors, the occurrence, severity, and detectability of the failure mode, but also the other incomplete risk factors are taken into consideration. In addition, the relative importance among all these risk factors is well addressed in the proposed method. GEFMEA is based on the generalized evidence theory, which is efficient in handling incomplete information in the open world. The efficiency and some merit of the proposed method are verified by the numerical example and a real case study on aircraft turbine rotor blades.

Suggested Citation

  • Deyun Zhou & Yongchuan Tang & Wen Jiang, 2016. "A Modified Model of Failure Mode and Effects Analysis Based on Generalized Evidence Theory," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-11, August.
  • Handle: RePEc:hin:jnlmpe:4512383
    DOI: 10.1155/2016/4512383
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/4512383.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/4512383.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/4512383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Wang & Rongxi Wang & Wei Deng & Yong Zhao, 2022. "An Integrated Approach-Based FMECA for Risk Assessment: Application to Offshore Wind Turbine Pitch System," Energies, MDPI, vol. 15(5), pages 1-25, March.
    2. Jian Wu & Jun Chen & Wei Liu & Yujia Liu & Changyong Liang & Mingshuo Cao, 2022. "A Calibrated Individual Semantic Based Failure Mode and Effect Analysis and Its Application in Industrial Internet Platform," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    3. Heng Zhang & Yaya Chen & Jingyu Cong & Junxiao Liu & Zhifu Zhang & Xirui Zhang, 2023. "Reliability Study of an Intelligent Profiling Progressive Automatic Glue Cutter Based on the Improved FMECA Method," Agriculture, MDPI, vol. 13(8), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4512383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.