Author
Listed:
- Zawar Hussain
- Atif Akbar
- Firdous Khan
Abstract
Binomial regression is used as a generalized linear model (GLM) in natural sciences to identify the covariate structure that is responsible for outcomes. It is very important to assess the adequacy and effectiveness of any model before its implementation. In GLM context, this study explores the structure and usefulness of partial residual (PRES), augmented partial residual (APRES), and conditional expectation and residuals (CERES) plots for visualizing influence diagnostics as a function of selected predictors. Binomial regression is considered here with predictor transformation, and PRES, APRES, and CERES plots are constructed for diagnostics of outliers and multicollinearity. The efficacy of these plots for obtaining a good visual impression may be varied due to behaviour of response variable and allied link function with different covariates. The certain techniques are applied on the data of hindered internal rotational (HIR) treatment of chemical species to recognize patterns for efficient modelling. The power of the tests for different plots shows that APRES and CERES (L) endure maximum power for detection of outliers and multicollinearity. The results revealed that residuals plots are more effective as compared to the conventional methods and help the scientists to easily and effectively model the data for their diagnostics policies.
Suggested Citation
Zawar Hussain & Atif Akbar & Firdous Khan, 2022.
"Diagnostics through Residual Plots in Binomial Regression Addressing Chemical Species Data,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-13, February.
Handle:
RePEc:hin:jnlmpe:4375945
DOI: 10.1155/2022/4375945
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4375945. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.