IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4317670.html
   My bibliography  Save this article

HLRF-BFGS-Based Algorithm for Inverse Reliability Analysis

Author

Listed:
  • Rakul Bharatwaj Ramesh
  • Olivia Mirza
  • Won-Hee Kang

Abstract

This study proposes an algorithm to solve inverse reliability problems with a single unknown parameter. The proposed algorithm is based on an existing algorithm, the inverse first-order reliability method (inverse-FORM), which uses the Hasofer Lind Rackwitz Fiessler (HLRF) algorithm. The initial algorithm analyzed in this study was developed by modifying the HLRF algorithm in inverse-FORM using the Broyden-Fletcher-Goldarb-Shanno (BFGS) update formula completely. Based on numerical experiments, this modification was found to be more efficient than inverse-FORM when applied to most of the limit state functions considered in this study, as it requires comparatively a smaller number of iterations to arrive at the solution. However, to achieve this higher computational efficiency, this modified algorithm sometimes compromised the accuracy of the final solution. To overcome this drawback, a hybrid method by using both the algorithms, original HLRF algorithm and the modified algorithm with BFGS update formula, is proposed. This hybrid algorithm achieves better computational efficiency, compared to inverse-FORM, without compromising the accuracy of the final solution. Comparative numerical examples are provided to demonstrate the improved performance of this hybrid algorithm over that of inverse-FORM in terms of accuracy and efficiency.

Suggested Citation

  • Rakul Bharatwaj Ramesh & Olivia Mirza & Won-Hee Kang, 2017. "HLRF-BFGS-Based Algorithm for Inverse Reliability Analysis," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-15, July.
  • Handle: RePEc:hin:jnlmpe:4317670
    DOI: 10.1155/2017/4317670
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/4317670.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/4317670.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/4317670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leimeister, Mareike & Kolios, Athanasios, 2021. "Reliability-based design optimization of a spar-type floating offshore wind turbine support structure," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4317670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.