IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4312842.html
   My bibliography  Save this article

Economic Management Data Envelopes Based on the Clustering of Incomplete Data

Author

Listed:
  • Shuo Dong
  • Sang-Bing Tsai

Abstract

In this paper, the economic management data envelope is analyzed by an algorithm for clustering incomplete data, a local search method based on reference vectors is designed in the algorithm to improve the accuracy of the algorithm, and a final solution selection method based on integrated clustering is proposed to obtain the final clustering results from the last generation of the solution set. The proposed algorithm and various aspects of it are tested in comparison using benchmark datasets and other comparison algorithms. A time-series domain partitioning method based on fuzzy mean clustering and information granulation is proposed, and a time series prediction method is proposed based on the domain partitioning results. Firstly, the fuzzy mean clustering method is applied to initially divide the theoretical domain of the time series, and then, the optimization algorithm of the theoretical domain division based on information granulation is proposed. It combines the clustering algorithm and the information granulation method to divide the theoretical domain and improves the accuracy and interpretability of sample data division. This article builds an overview of data warehouse, data integration, and rule engine. It introduces the business data integration of the economic management information system data warehouse and the data warehouse model design, taking tax as an example. The fuzzy prediction method of time series is given for the results of the theoretical domain division after the granulation of time-series information, which transforms the precise time-series data into a time series composed of semantic values conforming to human cognitive forms. It describes the dynamic evolution process of time series by constructing the fuzzy logical relations to these semantic values to obtain their fuzzy change rules and make predictions, which improves the comprehensibility of prediction results. Finally, the prediction experiments are conducted on the weighted stock price index dataset, and the experimental results show that applying the proposed time-series information granulation method for time series prediction can improve the accuracy of the prediction results.

Suggested Citation

  • Shuo Dong & Sang-Bing Tsai, 2021. "Economic Management Data Envelopes Based on the Clustering of Incomplete Data," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, December.
  • Handle: RePEc:hin:jnlmpe:4312842
    DOI: 10.1155/2021/4312842
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/4312842.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/4312842.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/4312842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4312842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.