Author
Listed:
- Lang Wu
- Fulin Cai
- Li Li
- Xianghua Chu
Abstract
Cross-trained worker assignment has become increasingly important for manufacturing efficiency and flexibility in cellular manufacturing system because of the recent increase in labor cost. Researchers mainly focused on assigning skilled workers to tasks for favorable capacity or cost. However, few of them have recognized the need for skill level enhancement through cross-training to avoid excessive training, especially for workload balance across multiple cells. This study presents a new mathematical programming model aimed at minimum training and maximum workload balance with economical labor utilization, to address the worker assignment problem with a cross-training plan spanning multiple cells. The model considers the trade-off between training expenditure and workload balance to achieve a more flexible solution based on decision-maker’s preference. Considering the computational complexity of the problem, the classical swarm intelligence optimizers, i.e., particle swarm optimization (PSO) and artificial bee colony (ABC), are implemented to search the problem landscape. To improve the optimization performance, a superior tracking ABC with an augmented information sharing strategy is designed to address the problem. Ten benchmark problems are employed for numerical experiments. The results indicate the efficiency and effectiveness of the proposed models as well as the developed algorithms.
Suggested Citation
Lang Wu & Fulin Cai & Li Li & Xianghua Chu, 2018.
"Cross-Trained Worker Assignment Problem in Cellular Manufacturing System Using Swarm Intelligence Metaheuristics,"
Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-15, November.
Handle:
RePEc:hin:jnlmpe:4302062
DOI: 10.1155/2018/4302062
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4302062. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.