IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/426152.html
   My bibliography  Save this article

Improved Extreme Learning Machine and Its Application in Image Quality Assessment

Author

Listed:
  • Li Mao
  • Lidong Zhang
  • Xingyang Liu
  • Chaofeng Li
  • Hong Yang

Abstract

Extreme learning machine (ELM) is a new class of single-hidden layer feedforward neural network (SLFN), which is simple in theory and fast in implementation. Zong et al. propose a weighted extreme learning machine for learning data with imbalanced class distribution, which maintains the advantages from original ELM. However, the current reported ELM and its improved version are only based on the empirical risk minimization principle, which may suffer from overfitting. To solve the overfitting troubles, in this paper, we incorporate the structural risk minimization principle into the (weighted) ELM, and propose a modified (weighted) extreme learning machine (M-ELM and M-WELM). Experimental results show that our proposed M-WELM outperforms the current reported extreme learning machine algorithm in image quality assessment.

Suggested Citation

  • Li Mao & Lidong Zhang & Xingyang Liu & Chaofeng Li & Hong Yang, 2014. "Improved Extreme Learning Machine and Its Application in Image Quality Assessment," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-7, May.
  • Handle: RePEc:hin:jnlmpe:426152
    DOI: 10.1155/2014/426152
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/426152.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/426152.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/426152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiyong Zhao & Yanzhou Li & Yongli Chen & Xi Qiao, 2022. "A Method of Cyanobacterial Concentrations Prediction Using Multispectral Images," Sustainability, MDPI, vol. 14(19), pages 1-15, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:426152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.