Author
Listed:
- Jianjian Zhu
- Yanlong Xue
- Gengxin Sun
Abstract
Mental health and mental health problems of college students are becoming more and more obvious, and there is more and more negative news caused by psychological problems, and society from all walks of life has given high attention to this problem. Given the new situations and new problems, how to keep up with the times and reform and innovate in the content, method, and path of psychological education in colleges and universities is an important work of ideological and political education in colleges and universities. Because fine-grained category information can provide rich semantic clues, fine-grained parallel computing techniques are widely used in tasks such as sensitive feature filtering, medical image classification, and dangerous goods detection. In this study, we adopt a fine-grained parallel computing programming approach and propose a multiobjective matrix regular optimization algorithm that can simultaneously perform the joint square root, low-rank, and sparse regular optimization for bilinear visual features, which is used to stabilize the higher-order semantic information in bilinear features, improve the generalization ability of features, and apply it to the construction of mental health education models for college students to promote the construction of mental health education bases, improve mental health education network platform, and strengthen the construction of mental health education data platform. A new practical aspect has been added to the abstract. The saliency-guided data augmentation method in this study is an improvement on random data augmentation but reduces the randomness in the data augmentation process and significantly improves the results. The best result belongs to SCutMix data augmentation, which improves by 1.9% compared to the baseline network.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4206714. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.