IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4194263.html
   My bibliography  Save this article

An Expanded Heterogeneous Particle Swarm Optimization Based on Adaptive Inertia Weight

Author

Listed:
  • Sami Zdiri
  • Jaouher Chrouta
  • Abderrahmen Zaafouri

Abstract

In this study, a modified version of multiswarm particle swarm optimization algorithm (MsPSO) is proposed. However, the classical MsPSO algorithm causes premature stagnation due to the limitation of particle diversity; as a result, it is simple to slip into a local optimum. To overcome the above feebleness, this work presents a heterogeneous multiswarm PSO algorithm based on adaptive inertia weight strategies called (A-MsPSO). The MsPSO’s main advantages are that it is simple to use and that there are few settings to alter. In the MsPSO method, the inertia weight is a key parameter affecting considerably convergence, exploration, and exploitation. In this manuscript, an adaptive inertia weight is adopted to ameliorate the global search ability of the classical MsPSO algorithm. Its performance is based on exploration, which is defined as an algorithm’s capacity to search through a variety of search spaces. It also aids in determining the best ideal capability for searching a small region and determining the candidate answer. If a swarm discovers a global best location during iterations, the inertia weight is increased, and exploration in that direction is enhanced. The standard tests and indications provided in the specialized literature are used to show the efficiency of the proposed algorithm. Furthermore, findings of comparisons between A-MsPSO and six other common PSO algorithms show that our proposal has a highly promising performance for handling various types of optimization problems, leading to both greater solution accuracy and more efficient solution times.

Suggested Citation

  • Sami Zdiri & Jaouher Chrouta & Abderrahmen Zaafouri, 2021. "An Expanded Heterogeneous Particle Swarm Optimization Based on Adaptive Inertia Weight," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-24, October.
  • Handle: RePEc:hin:jnlmpe:4194263
    DOI: 10.1155/2021/4194263
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/4194263.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/4194263.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/4194263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangyue Wang & Ji Li & Lei Shao & Hongli Liu & Lei Ren & Lihua Zhu, 2023. "Short-Term Wind Power Prediction by an Extreme Learning Machine Based on an Improved Hunter–Prey Optimization Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-14, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4194263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.