IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/418793.html
   My bibliography  Save this article

Multiple Soliton Solutions for a New Generalization of the Associated Camassa-Holm Equation by Exp-Function Method

Author

Listed:
  • Yao Long
  • Yinghui He
  • Shaolin Li

Abstract

The Exp-function method is generalized to construct N-soliton solutions of a new generalization of the associated Camassa-Holm equation. As a result, one-soliton, two-soliton, and three-soliton solutions are obtained, from which the uniform formulae of N-soliton solutions are derived. It is shown that the Exp-function method may provide us with a straightforward, effective, and alternative mathematical tool for generating N-soliton solutions of nonlinear evolution equations in mathematical physics.

Suggested Citation

  • Yao Long & Yinghui He & Shaolin Li, 2014. "Multiple Soliton Solutions for a New Generalization of the Associated Camassa-Holm Equation by Exp-Function Method," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-7, July.
  • Handle: RePEc:hin:jnlmpe:418793
    DOI: 10.1155/2014/418793
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/418793.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/418793.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/418793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suganya, S. & Srividya, B. & Prabhu, A., 2024. "Existence of localized modes in a frustrated ferromagnetic spin chain with added biquadratic interaction," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Acharya, S.P. & Janaki, M.S., 2022. "Nonlinear dynamical modelling of high frequency electrostatic drift waves using fluid theoretical approach in magnetized plasma," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:418793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.