Author
Listed:
- Wenping Ma
- Xiaoting Li
- Yue Wu
- Licheng Jiao
- Dan Xing
Abstract
The unsupervised approach to change detection via synthetic aperture radar (SAR) images becomes more and more popular. The three-step procedure is the most widely used procedure, but it does not work well with the Yellow River Estuary dataset obtained by two synthetic aperture radars. The difference of the two radars in imaging techniques causes severe noise, which seriously affects the difference images generated by a single change detector in step two, producing the difference image. To deal with problem, we propose a change detector to fuse the log-ratio (LR) and the mean-ratio (MR) images by a context independent variable behavior (CIVB) operator and can utilize the complement information in two ratio images. In order to validate the effectiveness of the proposed change detector, the change detector will be compared with three other change detectors, namely, the log-ratio (LR), mean-ratio (MR), and the wavelet-fusion (WR) operator, to deal with three datasets with different characteristics. The four operators are applied not only in a widely used three-step procedure but also in a new approach. The experiments show that the false alarms and overall errors of change detection are greatly reduced, and the kappa and KCC are improved a lot. And its superiority can also be observed visually.
Suggested Citation
Wenping Ma & Xiaoting Li & Yue Wu & Licheng Jiao & Dan Xing, 2014.
"Data Fusion and Fuzzy Clustering on Ratio Images for Change Detection in Synthetic Aperture Radar Images,"
Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-14, December.
Handle:
RePEc:hin:jnlmpe:403095
DOI: 10.1155/2014/403095
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:403095. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.