IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/380926.html
   My bibliography  Save this article

Dynamic Energy Storage Control for Reducing Electricity Cost in Data Centers

Author

Listed:
  • Shuben Zhang
  • Jian Yang
  • Youkang Shi
  • Xiaomin Wu
  • Yongyi Ran

Abstract

As the scale of the data centers increases, electricity cost is becoming the fastest-growing element in their operation costs. In this paper, we investigate the electricity cost reduction opportunities utilizing energy storage facilities in data centers used as uninterrupted power supply units (UPS). Its basic idea is to combine the temporal diversity of electricity price and the energy storage to conceive a strategy for reducing the electricity cost. The electricity cost minimization is formulated in the framework of finite state-action discounted cost Markov decision process (MDP). We apply -Learning algorithm to solve the MDP optimization problem and derive a dynamic energy storage control strategy, which does not require any priori information on the Markov process. In order to address the slow-convergence problem of the -Learning based algorithm, we introduce a Speedy -Learning algorithm. We further discuss the offline optimization problem and obtain the optimal offline solution as the lower bound on the performance of the online and learning theoretic problem. Finally, we evaluate the performance of the proposed scheme by using real workload traces and electricity price data sets. The experimental results show the effectiveness of the proposed scheme.

Suggested Citation

  • Shuben Zhang & Jian Yang & Youkang Shi & Xiaomin Wu & Yongyi Ran, 2015. "Dynamic Energy Storage Control for Reducing Electricity Cost in Data Centers," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-13, January.
  • Handle: RePEc:hin:jnlmpe:380926
    DOI: 10.1155/2015/380926
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/380926.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/380926.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/380926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Shouquat Hossain & Naseer Abboodi Madlool & Ali Wadi Al-Fatlawi & Mamdouh El Haj Assad, 2023. "High Penetration of Solar Photovoltaic Structure on the Grid System Disruption: An Overview of Technology Advancement," Sustainability, MDPI, vol. 15(2), pages 1-25, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:380926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.