IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/3804751.html
   My bibliography  Save this article

The Influence of Slip Boundary Condition on Casson Nanofluid Flow over a Stretching Sheet in the Presence of Viscous Dissipation and Chemical Reaction

Author

Listed:
  • Ahmed A. Afify

Abstract

The impacts of multiple slips with viscous dissipation on the boundary layer flow and heat transfer of a non-Newtonian nanofluid over a stretching surface have been investigated numerically. The Casson fluid model is applied to characterize the non-Newtonian fluid behavior. Physical mechanisms responsible for Brownian motion and thermophoresis with chemical reaction are accounted for in the model. The governing nonlinear boundary layer equations through appropriate transformations are reduced into a set of nonlinear ordinary differential equations, which are solved numerically using a shooting method with fourth-order Runge-Kutta integration scheme. Comparisons of the numerical method with the existing results in the literature are made and an excellent agreement is obtained. The heat transfer rate is enhanced with generative chemical reaction and concentration slip parameter, whereas the reverse trend is observed with destructive chemical reaction and thermal slip parameter. It is also noticed that the mass transfer rate is boosted with destructive chemical reaction and thermal slip parameter. Further, the opposite influence is found with generative chemical reaction and concentration slip parameter.

Suggested Citation

  • Ahmed A. Afify, 2017. "The Influence of Slip Boundary Condition on Casson Nanofluid Flow over a Stretching Sheet in the Presence of Viscous Dissipation and Chemical Reaction," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-12, July.
  • Handle: RePEc:hin:jnlmpe:3804751
    DOI: 10.1155/2017/3804751
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/3804751.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/3804751.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/3804751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossam A. Nabwey & Aamir Abbas Khan & Muhammad Ashraf & Ahmad M. Rashad & Sumayyah I. Alshber & Miad Abu Hawsah, 2022. "Computational Analysis of the Magnetized Second Grade Fluid Flow Using Modified Fourier and Fick’s Law towards an Exponentially Stretching Sheet," Mathematics, MDPI, vol. 10(24), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3804751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.