Author
Listed:
- Xiaorui Cheng
- Boru Lv
- Chenying Ji
- Ningning Jia
- Dorah N
Abstract
In order to study the influence of the circumferential placement position of the guide vane on the flow field and stress-strain of a nuclear reactor coolant pump, the CAP1400 nuclear reactor coolant pump is taken as the research object. Based on numerical calculation and test results, the influence of circumferential placement position of the guide vane on the performance of the nuclear reactor coolant pump and stress-strain of guide vanes are analyzed by the unidirectional fluid-solid coupling method. The results show that the physical model and calculation method used in the study can accurately reflect the influence of the circumferential placement position of the guide vane on the nuclear reactor coolant pump. In the design condition, guide vane position has a great influence on the nuclear reactor coolant pump efficiency value, suction surface of the guide vane blade, and the maximum equivalent stress on the hub. However, it has a weak effect on the head value, pressure surface of the guide vane blade, and the maximum equivalent stress on the shroud. When the center line of the outlet diffuser channel of the case is located at the center of the outlet of flow channel of the guide vane, it is an optimal guide vane circumferential placement position, which can reduce the hydraulic loss of half of the case. Finally, it is found that the high stress concentration area is at the intersection of the exit edge of the vane blade and the front and rear cover, and the exit edge of the guide vane blade and its intersection with the front cover are areas where the strength damage is most likely to occur. This study provides a reference for nuclear reactor coolant pump installation, shock absorption design, and structural optimization.
Suggested Citation
Xiaorui Cheng & Boru Lv & Chenying Ji & Ningning Jia & Dorah N, 2020.
"Influence of Circumferential Placement Position of Guide Vanes on Performance and Dynamic Characteristics of Nuclear Reactor Coolant Pump,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, February.
Handle:
RePEc:hin:jnlmpe:3786745
DOI: 10.1155/2020/3786745
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3786745. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.