Author
Abstract
The aim of this paper is to establish a new method for inferring standard values of snow load in small sample situations. Due to the incomplete meteorological data in some areas, it is often necessary to infer the standard values of snow load in the conditions of small samples in engineering, but the point estimation methods of classical statistics adopted till now do not take into account the influences of statistical uncertainty, and the inference results are always aggressive. In order to overcome the above shortcomings, according to the basic principle of optimal linear unbiased estimation and invariant estimation of the minimum type I distribution parameters and the tantile, using the least square method, the linear regression estimation methods for inferring standard values of snow load in small sample situations are proposed, which can take into account two cases such as parameter-free and known coefficient of variation, and the predicted formulas of snow load standard values are given, respectively. Through numerical integration and Monte Carlo numerical simulation, the numerical table of correlation coefficients is established, which is more convenient for the direct application of inferential formulas. According to the results of theoretical analysis and examples, when using the indirect point estimation methods to infer the standard values of snow load in the conditions of small samples, the inference results are always small. The linear regression estimation method is suitable for inferring standard values of snow load in the conditions of small samples, which can give more reasonable results. When using the linear regression estimation to infer standard values of snow load in practical application, even if the coefficient of variation is unknown, it can set the upper limit value of the coefficient of variation according to the experience; meanwhile, according to the parameter-free and known coefficient of variation, the estimation is carried out, respectively, and the smaller value of the two is taken as the final estimate. The method can be extended to the statistical inference of variable load standard values such as wind load and floor load.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3753417. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.