Author
Listed:
- Shiping Song
- Jian Wu
- Sumin Zhang
- Yunhang Liu
- Shun Yang
Abstract
Millimeter-wave radar has been widely used in intelligent vehicle target detection. However, there are three difficulties in radar-based target tracking in curves. First, there are massive data association calculations with poor accuracy. Second, the lane position relationship of target-vehicle cannot be identified accurately. Third, the target tracking algorithm has poor robustness and accuracy. A target tracking algorithm framework on curved road is proposed herein. The following four algorithms are applied to reduce data association calculations and improve accuracy. (1) The data rationality judgment method is employed to eliminate target measurement data outside the radar detection range. (2) Effective target life cycle rules are used to eliminate false targets and clutter. (3) Manhattan distance clustering algorithm is used to cluster multiple data into one. (4) The correspondence between the measurement data received by the radar and the target source is identified by the nearest neighbor (NN) data association. The following three algorithms aim to derive the position relationship between the ego-vehicle and the target-vehicles. (1) The lateral speed is obtained by estimating the state of motion of the ego-vehicle. (2) An algorithm for state compensation of target motion is presented by considering the yaw motion of the ego-vehicle. (3) A target lane relationship recognition model is built. The improved adaptive extended Kalman filter (IAEKF) is used to improve the target tracking robustness and accuracy. Finally, the vehicle test verifies that the algorithms proposed herein can accurately identify the lane position relationship. Experiments show that the framework has higher target tracking accuracy and lower computational time.
Suggested Citation
Shiping Song & Jian Wu & Sumin Zhang & Yunhang Liu & Shun Yang, 2020.
"Research on Target Tracking Algorithm Using Millimeter-Wave Radar on Curved Road,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-21, June.
Handle:
RePEc:hin:jnlmpe:3749759
DOI: 10.1155/2020/3749759
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3749759. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.