Author
Listed:
- Daba Meshesha Gusu
- Dechasa Wegi
- Girma Gemechu
- Diriba Gemechu
Abstract
In this paper, we propose a novel reduced differential transform method (RDTM) to compute analytical and semianalytical approximate solutions of fractional order Airy’s ordinary differential equations and fractional order Airy’s and Airy’s type partial differential equations subjected to certain initial conditions. The performance of the proposed method was analyzed and compared with a convergent series solution form with easily computable coefficients. The behavior of approximated series solutions at different values of fractional order and its modeling in 2-dimensional and 3-dimensional spaces are compared with exact solutions using MATLAB graphical method analysis. Moreover, the physical and geometrical interpretations of the computed graphs are given in detail within 2- and 3-dimensional spaces. Accordingly, the obtained approximate solutions of fractional order Airy’s ordinary differential equations and fractional order Airy’s and Airy’s type partial differential equations subjected to certain initial conditions exactly fit with exact solutions. Hence, the proposed method reveals reliability, effectiveness, efficiency, and strengthening of computed mathematical results in order to easily solve fractional order Airy’s type differential equations.
Suggested Citation
Daba Meshesha Gusu & Dechasa Wegi & Girma Gemechu & Diriba Gemechu, 2021.
"Fractional Order Airy’s Type Differential Equations of Its Models Using RDTM,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-21, September.
Handle:
RePEc:hin:jnlmpe:3719206
DOI: 10.1155/2021/3719206
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3719206. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.