IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/370101.html
   My bibliography  Save this article

A Differential-Algebraic Model for the Once-Through Steam Generator of MHTGR-Based Multimodular Nuclear Plants

Author

Listed:
  • Zhe Dong

Abstract

Small modular reactors (SMRs) are those fission reactors whose electrical output power is no more than 300 MW e . SMRs usually have the inherent safety feature that can be applicable to power plants of any desired power rating by applying the multimodular operation scheme. Due to its strong inherent safety feature, the modular high temperature gas-cooled reactor (MHTGR), which uses helium as coolant and graphite as moderator and structural material, is a typical SMR for building the next generation of nuclear plants (NGNPs). The once-through steam generator (OTSG) is the basis of realizing the multimodular scheme, and modeling of the OTSG is meaningful to study the dynamic behavior of the multimodular plants and to design the operation and control strategy. In this paper, based upon the conservation laws of mass, energy, and momentum, a new differential-algebraic model for the OTSGs of the MHTGR-based multimodular nuclear plants is given. This newly-built model can describe the dynamic behavior of the OTSG in both the cases of providing superheated steam and generating saturated steam. Numerical simulation results show the feasibility and satisfactory performance of this model. Moreover, this model has been applied to develop the real-time simulation software for the operation and regulation features of the world first underconstructed MHTGR-based commercial nuclear plant—HTR-PM.

Suggested Citation

  • Zhe Dong, 2015. "A Differential-Algebraic Model for the Once-Through Steam Generator of MHTGR-Based Multimodular Nuclear Plants," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-12, March.
  • Handle: RePEc:hin:jnlmpe:370101
    DOI: 10.1155/2015/370101
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/370101.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/370101.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/370101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Shifa & Ma, Xiaolong & Liu, Junfeng & Wan, Jiashuang & Wang, Pengfei & Su, G.H., 2023. "A load following control strategy for Chinese Modular High-Temperature Gas-Cooled Reactor HTR-PM," Energy, Elsevier, vol. 263(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:370101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.