IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/367105.html
   My bibliography  Save this article

The Study of Scene Classification in the Multisensor Remote Sensing Image Fusion

Author

Listed:
  • Ji Li
  • Zhen Liu

Abstract

We propose a scene classification method for speeding up the multisensor remote sensing image fusion by using the singular value decomposition of quaternion matrix and the kernel principal component analysis (KPCA) to extract features. At first, images are segmented to patches by a regular grid, and for each patch, we extract color features by using quaternion singular value decomposition (QSVD) method, and the grey features are extracted by Gabor filter and then by using orientation histogram to describe the grey information. After that, we combine the color features and the orientation histogram together with the same weight to obtain the descriptor for each patch. All the patch descriptors are clustered to get visual words for each category. Then we apply KPCA to the visual words to get the subspaces of the category. The descriptors of a test image then are projected to the subspaces of all categories to get the projection length to all categories for the test image. Finally, support vector machine (SVM) with linear kernel function is used to get the scene classification performance. We experiment with three classification situations on OT8 dataset and compare our method with the typical scene classification method, probabilistic latent semantic analysis (pLSA), and the results confirm the feasibility of our method.

Suggested Citation

  • Ji Li & Zhen Liu, 2013. "The Study of Scene Classification in the Multisensor Remote Sensing Image Fusion," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, May.
  • Handle: RePEc:hin:jnlmpe:367105
    DOI: 10.1155/2013/367105
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/367105.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/367105.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/367105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:367105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.