IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/357864.html
   My bibliography  Save this article

Adaptive PI-Based Sliding Mode Control for Nanopositioning of Piezoelectric Actuators

Author

Listed:
  • Jin Li
  • Liu Yang

Abstract

This paper proposes an adaptive proportion-integral (PI)-based sliding mode control design (APISMC) used for nanopositioning of piezoelectric actuators (PEAs). Nonlinearities, mainly hysteresis, can drastically degrade the system performance. As well as the model imperfection, hysteresis can be treated as uncertainties of the system. These uncertainties can be addressed by sliding mode control (SMC) since SMC is promising for positioning and tracking control. To further improve the response speed, suppress chattering, and reduce the steady-state error, the adaptive PI-based SMC is employed to replace the discontinuous control. Actually, the adaptive PI-based SMC offers a fast convergence of the sliding surface. Further, another advantage of the proposed controller lies in that its implementation only requires the online tuning PI parameters without acquiring the knowledge of bounds on system uncertainties. A linear second-order system is utilized as the estimated model to compensate for the process nonlinearity and estimate the control gain. The robust stability of the APISMC is proved through a Lyapunov stability analysis. Simulation results demonstrate that the modified SMC is superior to the original one for both positioning and tracking applications. Compared with the original, the proposed controller provides better performance—less chattering, faster response, and higher precision.

Suggested Citation

  • Jin Li & Liu Yang, 2014. "Adaptive PI-Based Sliding Mode Control for Nanopositioning of Piezoelectric Actuators," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, January.
  • Handle: RePEc:hin:jnlmpe:357864
    DOI: 10.1155/2014/357864
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/357864.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/357864.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/357864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:357864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.