IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/354206.html
   My bibliography  Save this article

Multiobjective Optimization Problem of Multireservoir System in Semiarid Areas

Author

Listed:
  • Z. J. Chen
  • Z. J. Cheng
  • X. Q. Yan

Abstract

With the increasing scarcity of water resources, the growing importance of the optimization operation of the multireservoir system in water resources development, utilization, and management is increasingly evident. Some of the existing optimization methods are inadequate in applicability and effectiveness. Therefore, we need further research in how to enhance the applicability and effectiveness of the algorithm. On the basis of the research of the multireservoir system’s operating parameters in the Urumqi River basin, we establish a multiobjective optimization problem (MOP) model of water resources development, which meets the requirements of water resources development. In the mathematical model, the domestic water consumption is the biggest, the production of industry and agricultural is the largest, the gross output value of industry and agricultural is the highest, and the investment of the water development is the minimum. We use the weighted variable-step shuffled frog leaping algorithm (SFLA) to resolve it, which satisfies the constraints. Through establishing the test function and performance metrics, we deduce the evolutionary algorithms, which suit for solving MOP of the scheduling, and realize the multiobjective optimization of the multireservoir system. After that, using the fuzzy theory, we convert the competitive multiobjective function into single objective problem of maximum satisfaction, which is the only solution. A feasible solution is provided to resolve the multiobjective scheduling optimization of multireservoir system in the Urumqi River basin. It is the significance of the layout of production, the regional protection of ecological environment, and the sufficient and rational use of natural resources, in Urumqi and the surrounding areas.

Suggested Citation

  • Z. J. Chen & Z. J. Cheng & X. Q. Yan, 2013. "Multiobjective Optimization Problem of Multireservoir System in Semiarid Areas," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-8, May.
  • Handle: RePEc:hin:jnlmpe:354206
    DOI: 10.1155/2013/354206
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/354206.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/354206.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/354206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:354206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.