Author
Listed:
- Wei Wei
- Nan Chen
- Zhiyuan Zhang
- Zaiwen Liu
- Min Zuo
Abstract
Dissolved oxygen (DO) concentration is a key variable in wastewater treatment process (WWTP). It directly influences effluent quality of a wastewater treatment. However, due to the great changes of the influent flow rate and the large uncertainties of the wastewater in composition, concentration, and temperature, most control approaches become powerless on DO regulation. To improve the robustness of a DO control, and reduce the phase delay between the control input and the system output, a U-model-based active disturbance rejection control (UADRC) is proposed. The U-model control (UC) reduces the phase delay between the control input and the system output. The active disturbance rejection control (ADRC) enhances the robustness of the closed-loop system. Also, ADRC converts the system dynamics to be integrators connected in series, which helps the realization of UC. By changing the system dynamics to be an approximate unit, a controller based on desired closed-loop system dynamics can be designed and the DO concentration is guaranteed. UADRC combines advantages of both UC and ADRC, and a commonly accepted benchmark simulation model no.1 (BSM1) is taken to verify the proposed UADRC. Numerical results show that, with similar energy consumption, the UADRC is able to achieve much better tracking performance than ADRC, SMC, and PI with suggested parameters.
Suggested Citation
Wei Wei & Nan Chen & Zhiyuan Zhang & Zaiwen Liu & Min Zuo, 2020.
"U-Model-Based Active Disturbance Rejection Control for the Dissolved Oxygen in a Wastewater Treatment Process,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, May.
Handle:
RePEc:hin:jnlmpe:3507910
DOI: 10.1155/2020/3507910
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3507910. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.