IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/349781.html
   My bibliography  Save this article

A Multiobjective Genetic Algorithm Based on a Discrete Selection Procedure

Author

Listed:
  • Qiang Long
  • Changzhi Wu
  • Xiangyu Wang
  • Lin Jiang
  • Jueyou Li

Abstract

Multiobjective genetic algorithm (MOGA) is a direct search method for multiobjective optimization problems. It is based on the process of the genetic algorithm; the population-based property of the genetic algorithm is well applied in MOGAs. Comparing with the traditional multiobjective algorithm whose aim is to find a single Pareto solution, the MOGA intends to identify numbers of Pareto solutions. During the process of solving multiobjective optimization problems using genetic algorithm, one needs to consider the elitism and diversity of solutions. But, normally, there are some trade-offs between the elitism and diversity. For some multiobjective problems, elitism and diversity are conflicting with each other. Therefore, solutions obtained by applying MOGAs have to be balanced with respect to elitism and diversity. In this paper, we propose metrics to numerically measure the elitism and diversity of solutions, and the optimum order method is applied to identify these solutions with better elitism and diversity metrics. We test the proposed method by some well-known benchmarks and compare its numerical performance with other MOGAs; the result shows that the proposed method is efficient and robust.

Suggested Citation

  • Qiang Long & Changzhi Wu & Xiangyu Wang & Lin Jiang & Jueyou Li, 2015. "A Multiobjective Genetic Algorithm Based on a Discrete Selection Procedure," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-17, September.
  • Handle: RePEc:hin:jnlmpe:349781
    DOI: 10.1155/2015/349781
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/349781.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/349781.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/349781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanida Limmun & Boonorm Chomtee & John J. Borkowski, 2023. "Generating Robust Optimal Mixture Designs Due to Missing Observation Using a Multi-Objective Genetic Algorithm," Mathematics, MDPI, vol. 11(16), pages 1-33, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:349781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.