IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/3424819.html
   My bibliography  Save this article

Distributed Deep CNN-LSTM Model for Intrusion Detection Method in IoT-Based Vehicles

Author

Listed:
  • Ali Alferaidi
  • Kusum Yadav
  • Yasser Alharbi
  • Navid Razmjooy
  • Wattana Viriyasitavat
  • Kamal Gulati
  • Sandeep Kautish
  • Gaurav Dhiman
  • Ramin Ranjbarzadeh

Abstract

As 5G and other technologies are widely used in the Internet of Vehicles, intrusion detection plays an increasingly important role as a vital detection tool for information security. However, due to the rapid changes in the structure of the Internet of Vehicles, the large data flow, and the complex and diverse forms of intrusion, traditional detection methods cannot ensure their accuracy and real-time requirements and cannot be directly applied to the Internet of Vehicles. A new AA distributed combined deep learning intrusion detection method for the Internet of Vehicles based on the Apache Spark framework is proposed in response to these problems. The cluster combines deep-learning convolutional neural network (CNN) and extended short-term memory (LSTM) network to extract features and data for detection of car network intrusion from large-scale car network data traffic and discovery of abnormal behavior. The experimental results show that compared with other existing models, the algorithm of this model can reach 20 in the fastest time, and the accuracy rate is up to 99.7%, with a good detection effect.

Suggested Citation

  • Ali Alferaidi & Kusum Yadav & Yasser Alharbi & Navid Razmjooy & Wattana Viriyasitavat & Kamal Gulati & Sandeep Kautish & Gaurav Dhiman & Ramin Ranjbarzadeh, 2022. "Distributed Deep CNN-LSTM Model for Intrusion Detection Method in IoT-Based Vehicles," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-8, March.
  • Handle: RePEc:hin:jnlmpe:3424819
    DOI: 10.1155/2022/3424819
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/3424819.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/3424819.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/3424819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maytham N. Meqdad & Seifedine Kadry & Hafiz Tayyab Rauf, 2022. "Improved Dragonfly Optimization Algorithm for Detecting IoT Outlier Sensors," Future Internet, MDPI, vol. 14(10), pages 1-16, October.
    2. Hamza Mohammed Ridha Al-Khafaji, 2022. "Improving Quality Indicators of the Cloud-Based IoT Networks Using an Improved Form of Seagull Optimization Algorithm," Future Internet, MDPI, vol. 14(10), pages 1-13, September.
    3. Wu, Cong & Li, Jiaxuan & Liu, Wenjin & He, Yuzhe & Nourmohammadi, Samad, 2023. "Short-term electricity demand forecasting using a hybrid ANFIS–ELM network optimised by an improved parasitism–predation algorithm," Applied Energy, Elsevier, vol. 345(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3424819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.