IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/3421478.html
   My bibliography  Save this article

Prediction Modelling of Cold Chain Logistics Demand Based on Data Mining Algorithm

Author

Listed:
  • Bo He
  • Lvjiang Yin

Abstract

Modern information technologies such as big data and cloud computing are increasingly important and widely applied in engineering and management. In terms of cold chain logistics, data mining also exerts positive effects on it. Specifically, accurate prediction of cold chain logistics demand is conducive to optimizing management processes as well as improving management efficiency, which is the main purpose of this research. In this paper, we analyze the existing problems related to cold chain logistics in the context of Chinese market, especially the aspect of demand prediction. Then, we conduct the mathematical calculation based on the neural network algorithm and grey prediction. Two forecasting models are constructed with the data from 2013 to 2019 by R program 4.0.2, aiming to explore the cold chain logistics demand. According to the results estimated by the two models, we find that both of models show high accuracy. In particular, the prediction of neural network algorithm model is closer to the actual value with smaller errors. Therefore, it is better to consider the neural network algorithm as the first choice when constructing the mathematical forecasting model to predict the demand of cold chain logistic, which provides a more accurate reference for the strategic deployment of logistics management such as optimizing automation and innovation in cold chain processes to adapt to the trend.

Suggested Citation

  • Bo He & Lvjiang Yin, 2021. "Prediction Modelling of Cold Chain Logistics Demand Based on Data Mining Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, February.
  • Handle: RePEc:hin:jnlmpe:3421478
    DOI: 10.1155/2021/3421478
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/3421478.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/3421478.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/3421478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastián Dávila & Miguel Alfaro & Guillermo Fuertes & Manuel Vargas & Mauricio Camargo, 2021. "Vehicle Routing Problem with Deadline and Stochastic Service Times: Case of the Ice Cream Industry in Santiago City of Chile," Mathematics, MDPI, vol. 9(21), pages 1-18, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3421478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.