IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/3405619.html
   My bibliography  Save this article

Risk-Field Based Modeling for Pedestrian Emergency Evacuation Combined with Alternative Route Strategy

Author

Listed:
  • Chao Wang
  • Jian Wang

Abstract

For the past decades, with the frequent occurrence of emergencies, such as stampede, fire, and terrorist attack, the urgent requirements of developing realistic evacuation models to describe pedestrian and disaster dynamics are put forward. In this paper, an extended floor-field (FF) model combined with risk factors is presented for emergency evacuation. A novel dynamic rerouting mechanism is designed to elucidate the exit choice behavior of evacuees, and meanwhile, a recommended dynamic risk-field model is fully explored to deal with dynamical features of disaster. The proposed model is validated through numerical simulations with specific room structures. The effects of model parameters on evacuation efficiency and death toll are analyzed in detail. Simulation results show that the proposed model is effective and has a positive influence on evacuees’ exit choice behavior, and the death toll is closely related to the perceived information obtained by evacuee, such as the crowd density during the evacuation process.

Suggested Citation

  • Chao Wang & Jian Wang, 2017. "Risk-Field Based Modeling for Pedestrian Emergency Evacuation Combined with Alternative Route Strategy," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-10, April.
  • Handle: RePEc:hin:jnlmpe:3405619
    DOI: 10.1155/2017/3405619
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/3405619.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/3405619.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/3405619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Hang & Li, Xintong & Song, Weiguo & Zhang, Jun & Li, Xudong & Xu, Han & Jiang, Kechun, 2022. "Pedestrian emergency evacuation model based on risk field under attack event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    2. Enrico Quagliarini & Fabio Fatiguso & Michele Lucesoli & Gabriele Bernardini & Elena Cantatore, 2021. "Risk Reduction Strategies against Terrorist Acts in Urban Built Environments: Towards Sustainable and Human-Centred Challenges," Sustainability, MDPI, vol. 13(2), pages 1-29, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3405619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.