Author
Listed:
- Can Wang
- Zhibin Li
- Yefei Kang
- Yingzheng Li
- Xos M. Pardo
Abstract
Under China’s Intelligent Electric Power Grid (IEPG), the research on IEPG inspection mode is of great significance. This work aims to improve the positioning and navigation performance of IEPG inspection robots in a complex environment. First, it reviews the monocular camera projection and the Inertial Measurement Unit (IMU) models. It also discusses the tight-coupling monocular Vision Inertial Navigation System (VINS) and the initialization theory of the Simultaneous Localization and Mapping (SLAM) system. Nonlinear optimization for SLAM by the Gauss–Newton Method (GNM) is established. Accordingly, this work proposes the SLAM system based on tight-coupling monocular VINS. The EuRoC dataset data sequence commonly used in visual-inertial algorithm testing in IEPG is used for simulation testing. The proposed SLAM system’s attitude and position estimation errors are analyzed on different datasets. The results show that the errors of roll, pitch, and yaw angle are acceptable. The errors of the X, Y, and Z axes are within 40 cm, meeting the positioning requirements of an Unmanned Aerial Vehicle (UAV). Meanwhile, the Root Mean Square Error (RMSE) evaluates the improvement of positioning accuracy by loop detection. The results testify that loop detection can reduce the RMSE and improve positioning accuracy. The attitude estimation tests the angle changes of pitch, roll, and yaw angles with time under a single rotation condition. The estimated value of the proposed SLAM algorithm is compared with the real value through Absolute Trajectory Error (ATE). The results show that the real value and the estimated value of attitude error can coincide well. Thus, the proposed SLAM algorithm is effective for positioning and navigation. ATE can also be controlled within ±2.5°, satisfying the requirements of navigation and positioning accuracy. The proposed SLAM system based on tight-coupling monocular VINS presents excellent positioning and navigation accuracy for the IEPG inspection robot. The finding has a significant reference value in the later research of IEPG inspection robots.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3378163. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.