Author
Listed:
- Hongcheng Xue
- Junping Qin
- Chao Quan
- Wei Ren
- Tong Gao
- Jingjing Zhao
Abstract
As the essential content of intelligent animal husbandry, identifying each livestock is the only way to achieve modern and refined scientific husbandry. This paper proposes a sheep face recognition method based on European spatial metrics and realizes noncontact sheep identity recognition by training the network using sheep face image samples in the natural environment. The SheepBase data set was first proposed in this process, which contains 6559 images of Inner Mongolia fine-wool sheep and Sunite sheep. To enhance the diversity of the data, the sheep face images were data-enhanced. Secondly, to solve the problems of more redundant information in the sheep face image and the poor posture and angle of the sheep face, we propose the sheep face detection and correction (SheepFaceRepair) method. This method aims to detect the sheep face area in the image to be recognized and align the sheep face area. On this basis, we offer an open sheep facial recognition network (SheepFaceNet) based on the European spatial metric. This method incorporates the biological identity information features of the sheep face to achieve sheep identity. We also tested the effectiveness of this method in the SheepBase data set. The experimental results show that the method proposed in this paper is much higher than the other methods, and the precision of recognition reaches 89.12%. In addition, we found that integrating the biometrics of the sheep face can effectively improve the network’s recognition capacity.
Suggested Citation
Hongcheng Xue & Junping Qin & Chao Quan & Wei Ren & Tong Gao & Jingjing Zhao, 2021.
"Open Set Sheep Face Recognition Based on Euclidean Space Metric,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, November.
Handle:
RePEc:hin:jnlmpe:3375394
DOI: 10.1155/2021/3375394
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3375394. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.