Author
Listed:
- Azher Uddin
- Bayazid Talukder
- Mohammad Monirujjaman Khan
- Atef Zaguia
Abstract
The world is facing a pandemic due to the coronavirus disease 2019 (COVID-19), named as per the World Health Organization. COVID-19 is caused by the virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was initially discovered in late December 2019 in Wuhan, China. Later, the virus had spread throughout the world within a few months. COVID-19 has become a global health crisis because millions of people worldwide are affected by this fatal virus. Fever, dry cough, and gastrointestinal problems are the most common signs of COVID-19. The disease is highly contagious, and affected people can easily spread the virus to those with whom they have close contact. Thus, contact tracing is a suitable solution to prevent the virus from spreading. The method of identifying all persons with whom a COVID-19-affected patient has come into contact in the last 2 weeks is called contact tracing. This study presents an investigation of a convolutional neural network (CNN), which makes the test faster and more reliable, to detect COVID-19 from chest X-ray (CXR) images. Because there are many studies in this field, the designed model focuses on increasing the accuracy level and uses a transfer learning approach and a custom model. Pretrained deep CNN models, such as VGG16, InceptionV3, MobileNetV2, and ResNet50, have been used for deep feature extraction. The performance measurement in this study was based on classification accuracy. The results of this study indicate that deep learning can recognize SARS-CoV-2 from CXR images. The designed model provided 93% accuracy and 98% validation accuracy, and the pretrained customized models such as MobileNetV2 obtained 97% accuracy, InceptionV3 obtained 98%, and VGG16 obtained 98% accuracy, respectively. Among these models, InceptionV3 has recorded the highest accuracy.
Suggested Citation
Azher Uddin & Bayazid Talukder & Mohammad Monirujjaman Khan & Atef Zaguia, 2021.
"Study on Convolutional Neural Network to Detect COVID-19 from Chest X-Rays,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, September.
Handle:
RePEc:hin:jnlmpe:3366057
DOI: 10.1155/2021/3366057
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3366057. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.