Author
Listed:
- Xuan Zhu
- Xianxian Wang
- Jun Wang
- Peng Jin
- Li Liu
- Dongfeng Mei
Abstract
Sparse representation has recently attracted enormous interests in the field of image super-resolution. The sparsity-based methods usually train a pair of global dictionaries. However, only a pair of global dictionaries cannot best sparsely represent different kinds of image patches, as it neglects two most important image features: edge and direction. In this paper, we propose to train two novel pairs of Direction and Edge dictionaries for super-resolution. For single-image super-resolution, the training image patches are, respectively, divided into two clusters by two new templates representing direction and edge features. For each cluster, a pair of Direction and Edge dictionaries is learned. Sparse coding is combined with the Direction and Edge dictionaries to realize super-resolution. The above single-image super-resolution can restore the faithful high-frequency details, and the POCS is convenient for incorporating any kind of constraints or priors. Therefore, we combine the two methods to realize multiframe super-resolution. Extensive experiments on image super-resolution are carried out to validate the generality, effectiveness, and robustness of the proposed method. Experimental results demonstrate that our method can recover better edge structure and details.
Suggested Citation
Xuan Zhu & Xianxian Wang & Jun Wang & Peng Jin & Li Liu & Dongfeng Mei, 2017.
"Image Super-Resolution Based on Sparse Representation via Direction and Edge Dictionaries,"
Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-11, June.
Handle:
RePEc:hin:jnlmpe:3259357
DOI: 10.1155/2017/3259357
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3259357. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.