Author
Abstract
The single-valued neutrosophic set (SVNS) can not only depict imperfect information in the real decision system but also handle undetermined and inconformity information flexibly and effectively. Three-way decisions (3WDs) are often used as an effective method to deal with uncertainties, but the conditional probability is given by the decision maker subjectively, which makes the decision result too subjective. This paper proposes a novel model based on 3WDs to settle the multiattribute decision-making (MADM) problems, where the attribute values are described by SVNS, and the attribute weights are entirely unknown. At first, we build a single-valued neutrosophic decision theory rough set (SVNDTRS) model based on Bayesian decision process. Then, we use the analytic hierarchy process (AHP) approach to calculate the subjective weight of each attribute, the information entropy to obtain the attribute’s objective weight, and the minimum total deviation approach to determine the combined weight of the attributes. After obtaining the standard weight, the grey relational analysis (GRA) method is utilized to calculate the grey correlation closeness with the ideal solution, and the conditional probability is estimated by it. In addition, we develop a decision-making method in view of the ideal solution of 3WDs with the SVNS. This approach not only considers the lowest cost but also gives a corresponding semantic explanation for the decision result of each alternative, which can supplement the decision results of GRA. At last, we illustrate the feasibility and effectiveness of 3WDs through an example of supplier selection and compare it with other methods to verify the advantages of our approach.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3258018. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.