IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/3256859.html
   My bibliography  Save this article

A Stochastic Differential Equation Driven by Poisson Random Measure and Its Application in a Duopoly Market

Author

Listed:
  • Tong Wang
  • Hao Liang

Abstract

We investigate a stochastic differential equation driven by Poisson random measure and its application in a duopoly market for a finite number of consumers with two unknown preferences. The scopes of pricing for two monopolistic vendors are illustrated when the prices of items are determined by the number of buyers in the market. The quantity of buyers is proved to obey a stochastic differential equation (SDE) driven by Poisson random measure which exists a unique solution. We derive the Hamilton-Jacobi-Bellman (HJB) about vendors’ profits and provide a verification theorem about the problem. When all consumers believe a vendor’s guidance about their preferences, the conditions that the other vendor’s profit is zero are obtained. We give an example of this problem and acquire approximate solutions about the profits of the two vendors.

Suggested Citation

  • Tong Wang & Hao Liang, 2020. "A Stochastic Differential Equation Driven by Poisson Random Measure and Its Application in a Duopoly Market," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, April.
  • Handle: RePEc:hin:jnlmpe:3256859
    DOI: 10.1155/2020/3256859
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/3256859.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/3256859.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/3256859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3256859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.