IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/323945.html
   My bibliography  Save this article

An Improved Interpolating Element-Free Galerkin Method Based on Nonsingular Weight Functions

Author

Listed:
  • F. X. Sun
  • C. Liu
  • Y. M. Cheng

Abstract

Based on the moving least-squares (MLS) approximation, an improved interpolating moving least-squares (IIMLS) method based on nonsingular weight functions is presented in this paper. Then combining the IIMLS method and the Galerkin weak form, an improved interpolating element-free Galerkin (IIEFG) method is presented for two-dimensional potential problems. In the IIMLS method, the shape function of the IIMLS method satisfies the property of Kronecker function, and there is no difficulty caused by singularity of the weight function. Then in the IIEFG method presented in this paper, the essential boundary conditions are applied naturally and directly. Moreover, the number of unknown coefficients in the trial function of the IIMLS method is less than that of the MLS approximation; then under the same node distribution, the IIEFG method has higher computational precision than element-free Galerkin (EFG) method and interpolating element-free Galerkin (IEFG) method. Four selected numerical examples are presented to show the advantages of the IIMLS and IIEFG methods.

Suggested Citation

  • F. X. Sun & C. Liu & Y. M. Cheng, 2014. "An Improved Interpolating Element-Free Galerkin Method Based on Nonsingular Weight Functions," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-13, March.
  • Handle: RePEc:hin:jnlmpe:323945
    DOI: 10.1155/2014/323945
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/323945.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/323945.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/323945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng-Yu Ku & Jing-En Xiao & Chih-Yu Liu, 2020. "A Novel Meshfree Approach with a Radial Polynomial for Solving Nonhomogeneous Partial Differential Equations," Mathematics, MDPI, vol. 8(2), pages 1-22, February.
    2. Zhijuan Meng & Xiaofei Chi & Lidong Ma, 2022. "A Hybrid Interpolating Meshless Method for 3D Advection–Diffusion Problems," Mathematics, MDPI, vol. 10(13), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:323945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.