Author
Listed:
- Xiujuan Yu
- Xiaoping Pang
- Zhihong Zou
- Guo Zhang
- Ying Hu
- Jingjun Dong
- Houli Song
Abstract
This paper presents a methodology for lightweight and high-strength design of an excavator bucket under uncertain loading. Uncertain loads are obtained by using the Monte Carlo simulation based on the existing soil-bucket interaction model in which the soil parameters are variable. And the well-known 3-sigma methodology is used for the quantification of the uncertain loads. Excavator bucket modelling is finished by using ANSYS Parameter Design Language (APDL). A multiobjective optimization model aiming to decrease the maximum von Mises stress and to reduce the weight of the bucket is established on the foundations of the uncertain load and the parametric geometry model. The structural shape and topology of the bucket are then designed by using the mixed variable genetic algorithm to solve the established optimization problem. The results show that the presented method can be effectively and efficiently applied for the optimization design of the excavator bucket and that the optimized bucket signifies obvious decreases in the weight and the stress compared with the initial reference model. The proposed methodology for structure optimization design considering uncertain loads not only provides the technical means for the design and development of high-performance bucket but also lays a preliminary theoretical foundation for the optimization design integrated machine-environment interaction.
Suggested Citation
Xiujuan Yu & Xiaoping Pang & Zhihong Zou & Guo Zhang & Ying Hu & Jingjun Dong & Houli Song, 2019.
"Lightweight and High-Strength Design of an Excavator Bucket under Uncertain Loading,"
Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-12, October.
Handle:
RePEc:hin:jnlmpe:3190819
DOI: 10.1155/2019/3190819
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3190819. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.