Author
Listed:
- Jianjiang Zhu
- Siquan Yu
- Lei Gao
- Zhi Han
- Yandong Tang
Abstract
Diver target automatic detection is indispensable for underwater defense systems, such as the unmanned harbor surveillance system. It is a very challenging task due to various poses and intensity features of diver target. In addition, the background noise in sonar images is complex, which also makes the task more difficult. In this paper, we propose a diver detection method based on saliency detection for sonar images. On the basis of studying the characteristics of diver sonar images, we first decompose the original sonar image and perform median filtering on it, which can significantly improve the quality of the sonar image saliency map. We employ saliency detection technique based on frequency analysis to segment the acoustic highlight region from its surroundings. This segmentation region roughly locates the diver target and generates a region of interest (ROI). We then extract the acoustic shadow region in ROI, which contributes to furtherly improve the localization accuracy. Finally, we merge the segmented highlight region and the extracted acoustic shadow region and compute the minimum outer rectangle of the merged region. Experimental results validate that the proposed method can well detect and locate the diver target, and it can also satisfy the demands of real-time application, and there is almost no false alarm in this method.
Suggested Citation
Jianjiang Zhu & Siquan Yu & Lei Gao & Zhi Han & Yandong Tang, 2020.
"Saliency-Based Diver Target Detection and Localization Method,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, February.
Handle:
RePEc:hin:jnlmpe:3186834
DOI: 10.1155/2020/3186834
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3186834. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.