IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/3124615.html
   My bibliography  Save this article

Inverse Family of Numerical Methods for Approximating All Simple and Roots with Multiplicity of Nonlinear Polynomial Equations with Engineering Applications

Author

Listed:
  • Mudassir Shams
  • Naila Rafiq
  • Nasreen Kausar
  • Shams Forruque Ahmed
  • Nazir Ahmad Mir
  • Suvash Chandra Saha

Abstract

A new inverse family of the iterative method is interrogated in the present article for simultaneously estimating all distinct and multiple roots of nonlinear polynomial equations. Convergence analysis proves that the order of convergence of the newly constructed family of methods is two. The computer algebra systems CAS-Mathematica is used to determine the lower bound of convergence order, which justifies the local convergence of the newly developed method. Some nonlinear models from physics, chemistry, and engineering sciences are considered to demonstrate the performance and efficiency of the newly constructed family of inverse simultaneous methods in comparison to classical methods in the literature. The computational time in seconds and residual error graph of the inverse simultaneous methods are also presented to elaborate their convergence behavior.

Suggested Citation

  • Mudassir Shams & Naila Rafiq & Nasreen Kausar & Shams Forruque Ahmed & Nazir Ahmad Mir & Suvash Chandra Saha, 2021. "Inverse Family of Numerical Methods for Approximating All Simple and Roots with Multiplicity of Nonlinear Polynomial Equations with Engineering Applications," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, December.
  • Handle: RePEc:hin:jnlmpe:3124615
    DOI: 10.1155/2021/3124615
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/3124615.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/3124615.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/3124615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3124615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.