Author
Listed:
- E. Liu
- Haiou Zhu
- Qing Liu
- Thomas Bilaliib Udimal
- Dinesh Kumar Saini
Abstract
Macroeconomic situation is the overall performance of the economic situation of a country and region. Making accurate forecasts of macroeconomic trends is of great significance for analyzing the success or failure of macroeconomic control policies, evaluating the quality of economic system operation, and correctly formulating future development planning strategies. The macroeconomic system is a nonlinear system, the environment is constantly changing, and additional disturbing factors directly affect the operation of the macroeconomic system, which has a great impact on the forecast results. The historical information required for macroeconomic modeling is unstable, unclear, and incomplete, which makes it very difficult to solve such problems with traditional forecasting methods. In response to the multivariate and nonlinear characteristics of macroeconomic forecasting, this paper proposes the application of artificial neural networks for forecasting. This paper introduces the recurrent neural network into the field of economic forecasting to solve the problems of the traditional BP (back propagation) neural network method. The experimental data are verified and the experimental results prove that the studied scheme based PSO-GRU improve the performance of economic forecasting.
Suggested Citation
E. Liu & Haiou Zhu & Qing Liu & Thomas Bilaliib Udimal & Dinesh Kumar Saini, 2022.
"Regional Economic Forecasting Method Based on Recurrent Neural Network,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-6, October.
Handle:
RePEc:hin:jnlmpe:3058947
DOI: 10.1155/2022/3058947
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3058947. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.