IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2980747.html
   My bibliography  Save this article

Fracture Segmentation Method Based on Contour Evolution and Gradient Direction Consistency in Sequence of Coal Rock CT Images

Author

Listed:
  • Zhiwei Li
  • Guoying Zhang

Abstract

The coal rock exhibits obvious heterogeneity and anisotropy after a long-term geological evolution in nature. Therefore, the coal rock CT (computed tomography) image shows uneven grey scale, low contrast, and the fractures with weak boundaries. The accurate segmentation of the coal rock fracture networks is challenging. In this paper, a segmentation method of fractures based on contour evolution and gradient direction consistency is proposed to accurately segment the fracture networks in the sequence of coal rock CT images. According to the contour variation rule of the fractures in the discrete 3D (three dimensional) space formed by the sequence of CT images, the fracture contour evolution model (FCEM) is constructed and the preliminary segmentation results of fractures are obtained from FCEM. A 3D adaptive median filtering (3DAMF) and a 3D bilateral filtering (3DBF) are proposed. The high density miscellaneous point noises in the coal rock CT images are filtered by the 3DAMF. And the boundaries of fractures are enhanced by 3DBF. According to the similarity of the preliminary segmentation results of fractures and the real contours of fractures, the preliminary segmentation results of fractures are optimized based on the gradient direction consistency model (GDCM) proposed in this paper to obtain the accurate boundaries of fractures. The fracture segmentation method proposed in this paper can obtain accurate boundaries of fractures with weak boundaries, and the experimental results show that the segmentation efficiency for sequence is high and adaptability is strong.

Suggested Citation

  • Zhiwei Li & Guoying Zhang, 2019. "Fracture Segmentation Method Based on Contour Evolution and Gradient Direction Consistency in Sequence of Coal Rock CT Images," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-8, February.
  • Handle: RePEc:hin:jnlmpe:2980747
    DOI: 10.1155/2019/2980747
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/2980747.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/2980747.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/2980747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2980747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.