IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/294523.html
   My bibliography  Save this article

Dynamic Model of Kaplan Turbine Regulating System Suitable for Power System Analysis

Author

Listed:
  • Jie Zhao
  • Li Wang
  • Dichen Liu
  • Jun Wang
  • Yu Zhao
  • Tian Liu
  • Haoyu Wang

Abstract

Accurate modeling of Kaplan turbine regulating system is of great significance for grid security and stability analysis. In this paper, Kaplan turbine regulating system model is divided into the governor system model, the blade control system model, and the turbine and water diversion system model. The Kaplan turbine has its particularity, and the on-cam relationship between the wicket gate opening and the runner blade angle under a certain water head on the whole range was obtained by high-order curve fitting method. Progressively the linearized Kaplan turbine model, improved ideal Kaplan turbine model, and nonlinear Kaplan turbine model were developed. The nonlinear Kaplan turbine model considered the correction function of the blade angle on the turbine power, thereby improving the model simulation accuracy. The model parameters were calculated or obtained by the improved particle swarm optimization (IPSO) algorithm. For the blade control system model, the default blade servomotor time constant given by value of one simplified the modeling and experimental work. Further studies combined with measured test data verified the established model accuracy and laid a foundation for further research into the influence of Kaplan turbine connecting to the grid.

Suggested Citation

  • Jie Zhao & Li Wang & Dichen Liu & Jun Wang & Yu Zhao & Tian Liu & Haoyu Wang, 2015. "Dynamic Model of Kaplan Turbine Regulating System Suitable for Power System Analysis," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-12, November.
  • Handle: RePEc:hin:jnlmpe:294523
    DOI: 10.1155/2015/294523
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/294523.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/294523.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/294523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Achitaev & Pavel Ilyushin & Konstantin Suslov & Sergey Kobyletski, 2022. "Dynamic Simulation of Starting and Emergency Conditions of a Hydraulic Unit Based on a Francis Turbine," Energies, MDPI, vol. 15(21), pages 1-18, October.
    2. Grzegorz Peczkis & Piotr Wiśniewski & Andriy Zahorulko, 2021. "Experimental and Numerical Studies on the Influence of Blade Number in a Small Water Turbine," Energies, MDPI, vol. 14(9), pages 1-15, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:294523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.