Author
Listed:
- Shitang Ke
- Wenlin Yu
- Yaojun Ge
Abstract
By focusing on wind-rain two-way coupling algorithm, simulation iterations of wind field and raindrops in the world highest cooling tower (210m) in northwest China were carried out using continuous phase and discrete phase models based on CFD numerical simulation. Firstly, influence laws of 9 wind velocity-rainfall intensity combinations on wind-induced rainfall, raindrop additional force, and equivalent pressure coefficient on internal and external surface of the tower body were discussed. On this basis, speed flow line, turbulence energy strength, raindrop running speed, and track on the tower body in the wind-rain coupling field were disclosed. Finally, qualitative and quantitative contrastive analyses on wind pressure, rain pressure, and equivalent pressure coefficient on internal and external surfaces of the tower body were conducted under different working conditions. Thus, the most unfavorable wind-rain combination was identified. Calculation formulas of equivalent internal and external pressure coefficients of super-large cooling towers were fitted from nonlinear least square method. Research results demonstrate that the 3D effect of equivalent internal and external pressure coefficients with considerations to wind-rain two-way coupling is more prominent. Particularly, there is strong transition on the windward region of the external surface and leeside region at bottom of internal surface. The quantity of caught raindrops on the structural surface is negatively related to wind velocity but is positively related to rainfall intensity. Rain load and rainfall coefficients on the external surface are significantly higher than those on the internal surface. Equivalent internal pressure coefficient has a sharp reduction on the leeside region under different working conditions. Besides, equivalent internal pressure coefficient of different meridians decreases with the increase of height. The maximum and minimum are -0.574 and -0.282, respectively. The proposed equivalent internal and external pressure coefficients of super-large cooling tower can predict wind load under extreme climate conditions accurately.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2921709. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.