IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2901210.html
   My bibliography  Save this article

Fuzzy Covering-Based Three-Way Clustering

Author

Listed:
  • Dandan Yang

Abstract

This paper investigates the three-way clustering involving fuzzy covering, thresholds acquisition, and boundary region processing. First of all, a valid fuzzy covering of the universe is constructed on the basis of an appropriate fuzzy similarity relation, which helps capture the structural information and the internal connections of the dataset from the global perspective. Due to the advantages of valid fuzzy covering, we explore the valid fuzzy covering instead of the raw dataset for RFCM algorithm-based three-way clustering. Subsequently, from the perspective of semantic interpretation of balancing the uncertainty changes in fuzzy sets, a method of partition thresholds acquisition combining linear and nonlinear fuzzy entropy theory is proposed. Furthermore, boundary regions in three-way clustering correspond to the abstaining decisions and generate uncertain rules. In order to improve the classification accuracy, the k -nearest neighbor (kNN) algorithm is utilized to reduce the objects in the boundary regions. The experimental results show that the performance of the proposed three-way clustering based on fuzzy covering and kNN-FRFCM algorithm is better than the compared algorithms in most cases.

Suggested Citation

  • Dandan Yang, 2020. "Fuzzy Covering-Based Three-Way Clustering," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, July.
  • Handle: RePEc:hin:jnlmpe:2901210
    DOI: 10.1155/2020/2901210
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/2901210.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/2901210.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/2901210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2901210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.