Author
Listed:
- Qing Tian
- Bo Li
- Hongquan Qu
- Liping Pang
- Weihang Zhao
- Yue Han
Abstract
With the increasing number of metros, the comfort and safety of crew and passengers in metro stations have been paid great attention. The environment forecasting has become very important for decision-making. The outputs of the traditional point prediction methods are some exact values in the future. However, it might be closer to the real conditions that the predicted variables are given a probability range with a different confidence rather than exact values. This paper proposes a probabilistic forecasting method of metro station environment based on autoregressive Long Short Term Memory (LSTM) network. It has a good performance to quantify the uncertainty of environment trend in a metro station. Seven-day field tests were carried out to obtain the measured data of 7 internal environmental parameters in a metro station and 8 external environment parameters. In order to ensure the prediction performance, the random forest algorithm is used to select the input variables for the proposed probabilistic forecasting method. The selected input variables and the previous predicted values are as the input variables to build the probabilistic forecasting model. The proposed method can realize to predict the probabilistic distribution of internal environmental parameters in a metro station. This work may contribute to prevent emergency events and regulate environment control system reasonably.
Suggested Citation
Qing Tian & Bo Li & Hongquan Qu & Liping Pang & Weihang Zhao & Yue Han, 2020.
"Probabilistic Forecasting Method of Metro Station Environment Based on Autoregressive LSTM Network,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, June.
Handle:
RePEc:hin:jnlmpe:2858471
DOI: 10.1155/2020/2858471
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2858471. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.