IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/284910.html
   My bibliography  Save this article

A Hybrid ICA-SVM Approach for Determining the Quality Variables at Fault in a Multivariate Process

Author

Listed:
  • Yuehjen E. Shao
  • Chi-Jie Lu
  • Yu-Chiun Wang

Abstract

The monitoring of a multivariate process with the use of multivariate statistical process control (MSPC) charts has received considerable attention. However, in practice, the use of MSPC chart typically encounters a difficulty. This difficult involves which quality variable or which set of the quality variables is responsible for the generation of the signal. This study proposes a hybrid scheme which is composed of independent component analysis (ICA) and support vector machine (SVM) to determine the fault quality variables when a step-change disturbance existed in a multivariate process. The proposed hybrid ICA-SVM scheme initially applies ICA to the Hotelling T 2 MSPC chart to generate independent components (ICs). The hidden information of the fault quality variables can be identified in these ICs. The ICs are then served as the input variables of the classifier SVM for performing the classification process. The performance of various process designs is investigated and compared with the typical classification method. Using the proposed approach, the fault quality variables for a multivariate process can be accurately and reliably determined.

Suggested Citation

  • Yuehjen E. Shao & Chi-Jie Lu & Yu-Chiun Wang, 2012. "A Hybrid ICA-SVM Approach for Determining the Quality Variables at Fault in a Multivariate Process," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-12, September.
  • Handle: RePEc:hin:jnlmpe:284910
    DOI: 10.1155/2012/284910
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2012/284910.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2012/284910.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/284910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Ding Hou & Rung-Hung Su, 2024. "An Outlier Detection Approach to Recognize the Sources of a Process Failure within a Multivariate Poisson Process," Mathematics, MDPI, vol. 12(18), pages 1-10, September.
    2. Yuehjen E. Shao & Shih-Chieh Lin, 2019. "Using a Time Delay Neural Network Approach to Diagnose the Out-of-Control Signals for a Multivariate Normal Process with Variance Shifts," Mathematics, MDPI, vol. 7(10), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:284910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.