IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2843436.html
   My bibliography  Save this article

GIS-Based Niche Hybrid Bat Algorithm for Solving Optimal Spatial Search

Author

Listed:
  • Guoming Du
  • Yangbo Chen
  • Wei Sun

Abstract

Complex nonlinear optimization problems are involved in optimal spatial search, such as location allocation problems that occur in multidimensional geographic space. Such search problems are generally difficult to solve by using traditional methods. The bat algorithm (BA) is an effective method for solving optimization problems. However, the solution of the standard BA is easily trapped at one of its local optimum values. The main cause of premature convergence is the loss of diversity in the population. The niche technique is an effective method to maintain the population diversity, to enhance the exploration of the new search domains, and to avoid premature convergence. In this paper, a geographic information system- (GIS-) based niche hybrid bat algorithm (NHBA) is proposed for solving the optimal spatial search. The NHBA is able to avoid the premature convergence and obtain the global optimal values. The GIS technique provides robust support for processing a substantial amount of geographical data. A case in Fangcun District, Guangzhou City, China, is used to test the NHBA. The comparative experiments illustrate that the BA, GA, FA, PSO, and NHBA algorithms outperform the brute-force algorithm in terms of computational efficiency, and the optimal solutions are more easily obtained with NHBA than with BA, GA, FA, and PSO. Moreover, the precision of NHBA is higher and the convergence of NHBA is faster than those of the other algorithms under the same conditions.

Suggested Citation

  • Guoming Du & Yangbo Chen & Wei Sun, 2020. "GIS-Based Niche Hybrid Bat Algorithm for Solving Optimal Spatial Search," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, May.
  • Handle: RePEc:hin:jnlmpe:2843436
    DOI: 10.1155/2020/2843436
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/2843436.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/2843436.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/2843436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2843436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.