IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2801227.html
   My bibliography  Save this article

A Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Samples Using Squeeze and Excitation Learning

Author

Listed:
  • Maryam Bukhari
  • Sadaf Yasmin
  • Saima Sammad
  • Ahmed A. Abd El-Latif
  • Nouman Ali

Abstract

Leukemia is a fatal category of cancer-related disease that affects individuals of all ages, including children and adults, and is a significant cause of death worldwide. Particularly, it is associated with White Blood Cells (WBC), which is accompanied by a rise in the number of immature lymphocytes and cause damage to the bone marrow and/or blood. Therefore, a rapid and reliable cancer diagnosis is a critical requirement for successful therapy to raise survival rates. Currently, a manual analysis of blood samples obtained through microscopic images is done to diagnose this disease, which is often very slow, time-consuming, and less accurate. Furthermore, in microscopic analysis, the appearance and shape of leukemic cells seem very similar to normal cells which make detection more difficult. In the past decades, deep learning utilizing Convolutional Neural Networks (CNN) has provided state-of-the-art approaches for image classification problems; however, there is still a gap to improve their efficacy, learning procedure, and performance. Therefore, in this research study, we proposed a new variant of deep learning algorithm to diagnose leukemia disease by analyzing the microscopic images of blood samples. The proposed deep learning architecture emphasizes the channel associations on all levels of feature representation by incorporating the squeeze and excitation learning that recursively performs recalibration on channel-wise feature outputs by modeling channel interdependencies explicitly. In addition, the incorporation of the squeeze-and-excitation process enhances the feature discriminability of leukemic and normal cells, and strategically assists in exposing informative features of leukemia cells while suppressing less valuable ones as well as improving feature representational power of deep learning algorithm. We show that piling these learning operations of squeeze and excite together in a deep learning model can improve the performance of the model in diagnosing leukemia from microscopic images based on blood samples of patients. Furthermore, an extensive set of experiments are performed on both cropped cells and full-size microscopic images as well as with data augmentation to address the problem of fewer data and to further boost their performance. The proposed model is tested on two publicly available datasets of blood samples of leukemia patients, namely, ALL_IDB1 and ALL_IDB2. The suggested deep learning model exhibits good results and can be utilized to make a reliable computer-aided diagnosis for leukemia cancer.

Suggested Citation

  • Maryam Bukhari & Sadaf Yasmin & Saima Sammad & Ahmed A. Abd El-Latif & Nouman Ali, 2022. "A Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Samples Using Squeeze and Excitation Learning," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-18, January.
  • Handle: RePEc:hin:jnlmpe:2801227
    DOI: 10.1155/2022/2801227
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/2801227.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/2801227.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/2801227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2801227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.