IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2746845.html
   My bibliography  Save this article

Deep Learning for Price Movement Prediction Using Convolutional Neural Network and Long Short-Term Memory

Author

Listed:
  • Can Yang
  • Junjie Zhai
  • Guihua Tao

Abstract

The prediction of stock price movement direction is significant in financial studies. In recent years, a number of deep learning models have gradually been applied for stock predictions. This paper presents a deep learning framework to predict price movement direction based on historical information in financial time series. The framework combines a convolutional neural network (CNN) for feature extraction and a long short-term memory (LSTM) network for prediction. We specifically use a three-dimensional CNN for data input in the framework, including the information on time series, technical indicators, and the correlation between stock indices. And in the three-dimensional input tensor, the technical indicators are converted into deterministic trend signals and the stock indices are ranked by Pearson product-moment correlation coefficient (PPMCC). When training, a fully connected network is used to drive the CNN to learn a feature vector, which acts as the input of concatenated LSTM. After both the CNN and the LSTM are trained well, they are finally used for prediction in the testing set. The experimental results demonstrate that the framework outperforms state-of-the-art models in predicting stock price movement direction.

Suggested Citation

  • Can Yang & Junjie Zhai & Guihua Tao, 2020. "Deep Learning for Price Movement Prediction Using Convolutional Neural Network and Long Short-Term Memory," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, July.
  • Handle: RePEc:hin:jnlmpe:2746845
    DOI: 10.1155/2020/2746845
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/2746845.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/2746845.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/2746845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eachempati, Prajwal & Srivastava, Praveen Ranjan & Kumar, Ajay & Tan, Kim Hua & Gupta, Shivam, 2021. "Validating the impact of accounting disclosures on stock market: A deep neural network approach," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    2. Manlika Ratchagit & Honglei Xu, 2022. "A Two-Delay Combination Model for Stock Price Prediction," Mathematics, MDPI, vol. 10(19), pages 1-21, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2746845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.