Author
Listed:
- Xiaofeng Su
- Tianjing Zhang
- Man Fai Leung
Abstract
With the increase in information on various cloud computing platforms, there are more and more teaching documents and videos, which provide sufficient resources for people to learn. Facing the large-scale digital teaching resources, how to quickly and accurately retrieve the required content has become an important research direction in the information field. Especially in the face of heterogeneous, dynamic, and large-scale teaching resources stored in the cloud computing platform, the traditional cloud computing resource retrieval has poor performance and low work efficiency. To solve this problem, a cloud computing platform retrieval method based on genetic algorithm is proposed, which is suitable for intelligent retrieval of teaching resources. Firstly, the teaching resource storage system based on cloud computing platform is analyzed, and the overall architecture of the system and the network topology of cloud storage data are given. Then, a resource retrieval method suitable for cloud computing platform is designed by genetic algorithm, and the convergence performance of genetic algorithm is improved by ant colony algorithm. Finally, the selection algorithm in genetic algorithm is optimized by using random numbers and increasing the number of cycles. The experimental results show that the proposed intelligent retrieval method has greatly improved the Recall and Precision compared with the traditional retrieval methods.
Suggested Citation
Xiaofeng Su & Tianjing Zhang & Man Fai Leung, 2022.
"Research on Intelligent Retrieval Method of Teaching Resources on Large-Scale Network Platform,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-8, May.
Handle:
RePEc:hin:jnlmpe:2745773
DOI: 10.1155/2022/2745773
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2745773. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.