IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2720873.html
   My bibliography  Save this article

Simulation Analysis of Bionic Robot Fish Based on MFC Materials

Author

Listed:
  • Chengguang Zhang

Abstract

With the development of marine resources, research on underwater robots has received unprecedented attention. The discovery and application of new smart materials provide new ideas for the research of underwater robots, which can overcome the issues of traditional underwater robots and optimize their design. A macro fiber composite (MFC) is a new type of piezoelectric fiber composite that combines actuators and sensors. The material has excellent deflection, good flexibility, and a high electromechanical coupling coefficient. Bionic mechatronics design is an effective way to innovate mechatronics in the future and can significantly improve mechatronics system performance. As an important issue for the design of bionic mechatronics, it is necessary to make robots as soft as natural organisms to achieve similar biological movement with both higher efficiency and performance. Compared with traditional rigid robots, the design and control of a soft robotic fish are difficult because the coupling between the flexible structure and the surrounding environment should be considered, which is difficult to solve due to the large deformation and coupling dynamics. In this paper, an MFC smart material is applied as an actuator in the design of bionic robotic fish. Combined with the piezoelectric constitutive and elastic constitutive equations of the MFC material, the voltage-drive signal is converted to a mechanical load applied to the MFC actuator, which makes the MFC material deform and drives the movement of the robotic fish. The characteristics of caudal fin motion during the swimming process of the bionic robotic fish were analyzed by an acoustic-solid coupling analysis method. The motion control analysis of the bionic robotic fish was carried out by changing the applied driving signal. Through numerical analysis, a new type of soft robotic fish was designed, and the feasibility of using an MFC smart material for underwater bionic robotic fish actuators was verified. The new soft robotic fish was successfully developed to achieve high performance.

Suggested Citation

  • Chengguang Zhang, 2019. "Simulation Analysis of Bionic Robot Fish Based on MFC Materials," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-9, June.
  • Handle: RePEc:hin:jnlmpe:2720873
    DOI: 10.1155/2019/2720873
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/2720873.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/2720873.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/2720873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2720873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.