IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2671792.html
   My bibliography  Save this article

PI Controller of Speed Regulation of Brushless DC Motor Based on Particle Swarm Optimization Algorithm with Improved Inertia Weights

Author

Listed:
  • Wei Xie
  • Jie-Sheng Wang
  • Hai-Bo Wang

Abstract

The brushless director current (DC) motor is a new type of mechatronic motor that has been developed rapidly with the development of power electronics technology and the emergence of new permanent magnet materials. Based on the speed regulation characteristics, speed regulation strategy, and mathematical model of brushless DC motor, a parameter optimization method of proportional-integral (PI) controller on speed regulation for the brushless DC motor based on particle swarm optimization (PSO) algorithm with variable inertia weights is proposed. The parameters of PI controller are optimized by PSO algorithm with five inertia weight adjustment strategies (linear descending inertia weight, linear differential descending inertia weight, incremental-decremented inertia weight, nonlinear descending inertia weight with threshold, and nonlinear descending inertia weight with control factor). The effectiveness of the proposed method is verified by the simulation experiments and the related simulation results.

Suggested Citation

  • Wei Xie & Jie-Sheng Wang & Hai-Bo Wang, 2019. "PI Controller of Speed Regulation of Brushless DC Motor Based on Particle Swarm Optimization Algorithm with Improved Inertia Weights," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-12, February.
  • Handle: RePEc:hin:jnlmpe:2671792
    DOI: 10.1155/2019/2671792
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/2671792.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/2671792.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/2671792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Rodríguez-Molina & Miguel Gabriel Villarreal-Cervantes & Omar Serrano-Pérez & José Solís-Romero & Ramón Silva-Ortigoza, 2022. "Optimal Tuning of the Speed Control for Brushless DC Motor Based on Chaotic Online Differential Evolution," Mathematics, MDPI, vol. 10(12), pages 1-32, June.
    2. Ma, Hongqiang & Xie, Yue & Duan, Kerun & Song, Xingpeng & Ding, Ruixiang & Hou, Caiqin, 2022. "Dynamic control method of flue gas heat transfer system in the waste heat recovery process," Energy, Elsevier, vol. 259(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2671792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.