IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2636302.html
   My bibliography  Save this article

Compound Fault Diagnosis of Rolling Bearing Based on ALIF-KELM

Author

Listed:
  • Jie Ma
  • Shitong Liang
  • Zhengyu Du
  • Ming Chen

Abstract

Aiming at the shortcomings of difficult classification of rolling bearing compound faults and low recognition accuracy, a composite fault diagnosis method of rolling bearing combined with ALIF and KELM is proposed. First, the basic concepts of ALIF and KELM are introduced, and then ALIF is used to decompose the sample data of vibration signals of different bearing states so that each sample can get several IMFs, select the top K IMFs containing the main fault information from each sample, calculate the energy feature and sample entropy of each IMF, and construct a fault feature vector with a dimension of 2K. Finally, the feature vectors of the training set and the test set are input into the KELM model for fault classification. Experimental results show that, compared with EMD-KELM model, ALIF-ELM model, ALIF-BP model, and IFD-KELM model, the rolling bearing composite fault diagnosis method based on the ALIF-KELM model has higher classification accuracy.

Suggested Citation

  • Jie Ma & Shitong Liang & Zhengyu Du & Ming Chen, 2021. "Compound Fault Diagnosis of Rolling Bearing Based on ALIF-KELM," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, October.
  • Handle: RePEc:hin:jnlmpe:2636302
    DOI: 10.1155/2021/2636302
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/2636302.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/2636302.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/2636302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Ren & Linlin Zhang & Jiangtao Chen & Jinwei Liu & Pan Liu & Ruoyu Qiao & Xianhe Yao & Shangchen Hou & Xiaokai Li & Chunyong Cao & Hongping Chen, 2022. "Noise Reduction Study of Pressure Pulsation in Pumped Storage Units Based on Sparrow Optimization VMD Combined with SVD," Energies, MDPI, vol. 15(6), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2636302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.