IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/260970.html
   My bibliography  Save this article

A Robust AdaBoost.RT Based Ensemble Extreme Learning Machine

Author

Listed:
  • Pengbo Zhang
  • Zhixin Yang

Abstract

Extreme learning machine (ELM) has been well recognized as an effective learning algorithm with extremely fast learning speed and high generalization performance. However, to deal with the regression applications involving big data, the stability and accuracy of ELM shall be further enhanced. In this paper, a new hybrid machine learning method called robust AdaBoost.RT based ensemble ELM (RAE-ELM) for regression problems is proposed, which combined ELM with the novel robust AdaBoost.RT algorithm to achieve better approximation accuracy than using only single ELM network. The robust threshold for each weak learner will be adaptive according to the weak learner’s performance on the corresponding problem dataset. Therefore, RAE-ELM could output the final hypotheses in optimally weighted ensemble of weak learners. On the other hand, ELM is a quick learner with high regression performance, which makes it a good candidate of “weak” learners. We prove that the empirical error of the RAE-ELM is within a significantly superior bound. The experimental verification has shown that the proposed RAE-ELM outperforms other state-of-the-art algorithms on many real-world regression problems.

Suggested Citation

  • Pengbo Zhang & Zhixin Yang, 2015. "A Robust AdaBoost.RT Based Ensemble Extreme Learning Machine," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-12, May.
  • Handle: RePEc:hin:jnlmpe:260970
    DOI: 10.1155/2015/260970
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/260970.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/260970.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/260970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:260970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.